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These lectures give a scif-contained introduction to supersymmetry from a modern
perspective. Emphasis is placed on material cssential to understanding duality.
Topics include: centrai charges and BPS-saturated states. supersymmetric noniin-
car sigma models, N=2 Yang-Mills theory, holomorpny and the N=2 Yang-Mills 8
function, supersymmetry in 2, §, 10, and 11 spacetime dimensions.

1 Introduction

“Never mind, lads. Same timne lomorrow. We must get a winner
one day.”
- Peter Cook, as the doomsday prophet in "The End of the World”.

Supersymmetry, along with its monozygotic sibling superstring theory, has
become the dominant framework for formulating physics beyond the standard
model. This despite the fact that, as of this morning, there is no unambiguous
experimental evidence for either idea. Theorists find supersymmetry appealing
for reasons which are both phenomenological and technical. In these lectures |
will focus exclusively on the technical appeal. There are many good recent re-
views of the phenomenology of supersymmetry. ! Some good technical reviews
are Wess and Bagger, ? West,? and Sohnius. *

The goal of these lectures is to provide the student with the technical back-
ground requisite for the recent applications of duality ideas to supersymmetric
gauge theories and superstrings. More specifically, if you absorb the material
in these lectures, you will understand Section 2 of Seiberg and Witten, 3 and
you will have a vague notion of why there might be such a thing as M-theory.
Beyond that, you're on your own.

2 Representations of Supersymmetry

2.1 The general 4-dimensional supersymmetiry algebra

A symmetry of the S-matrix means that the symmetry transformations have
the effect of merely reshuffling the asymptotic single and multiparticle states.
The known symmetries of the S-matrix in particle physics are:
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e Poincaré invariance. the semi-direct product of transiations and Lorentz
rotations. with generators Pp, Mmn.

e So-called “internal™ global symmetries. related to conserved quantum
numbers such as electric charge and isospin. The symmetry generators
are Lorentz scalars and generate a Lie algebra.

[Bt, Bk] = iC{kBJ- ' (1)
where the Cz’k are structure constants.

e Discrete symmetries: (. P. and T.

In 1967. (vleman and Mandula ® provided a rigorous argument which
proves that. given certain assumptions. the above are the oniy possibie sym-
metries of the S-matrix. The reader is encouraged to study this classic paper
and think about the physical and technical assumptions which are made there.

The Coleman-Mandula theorem can be evaded by weakening one or more
of its assumptions. In particular, the theorem assumes that the symmetry alge-
bra of the S-matrix involves only commutators. Weakening this assumption to
allow anticommuting generators as well as commuting generators leads to the
possibility of supersymmetry. Supersymmetry {or SUSY for short) is defined
as the introduction of anticommuting symmetry generators which transform in
the (3,0) and (0, 1) (i.e. spinor) representations of the Lorentz group. Since
these new symmetry generators are spinors. not scalars, supersymmetry is not
an internal svmmetry. It is rather an extension of the Poincaré spacetime
symmetries. Supersymmetry, defined as the extension of the Poincaré symme-
try algebra by anticommuting spinor generators. has an obvious extension to
spacetime dimensions other than four: the Coleman-Mandula theorem. on the
other hand. has no obvious extension bevond four dimensions.

In 1975, Haag, Lopuszanski. and Sohnius 7 proved that supersymmetry
is the only additional symmetry of the S-matrix allowed by this weaker set
of assumptions. Of course, one could imagine that a further weakening of
assumptions might lead to more new symmetries, but to date no physically
compelling examples have been exhibited. ® This is the basis of the strong but
not unreasonable assertion that:

Supersymmetry is the only possible extension of the known
spacetime symmetries of particle physics.

In four-dimensional Weyl spinor notation (see the Appendix) the N super-
symmetry generators are denoted by @2, A=1,...N. The most general four-
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dimensional supersymmetry algebra is given in the Appendix: here we will be
content with checking some of the features of this algebra.
The anticommutator of the @# with their adjoints is:

{Qa,Qs8} = 20TyPn6h (2)

To see this. note the right-hand side of Eq. 2 must transform as (%, %) under
the Lorentz group. The most general such object that can be constructed out
of Py, Mmn, and By has the form:

m A
daﬂPmCB y

where the Cfa are complex Lorentz scalar coefficients. Taking the adjoint of
the left-hand side of Eq. 2. using

t
m _ m
("aa) = %8a o
Ayt =54 .
(@) = Q& . (3)
tells us that C§ is a hermitian matrix. Furthermore. since {Q, @} is a positive
definite operator, C§ is a positive definite hermitian matrix. This means that
we can always choose a basis for the Q2 such that C4 is proportional to 6a.

The factor of two in Eq. 2 is simply a convention.
The SUSY generators @4 commute with the translation generators:

(QA, Pm] = [Q4,Pm] =0 . (4)

This is not obvious since the most general form consistent with Lorentz invari-
ance is:

Q4. Pn) = ZR0,;, 0"
@4 Pal = (28) QFa3 (5)

where the Zg are complex Lorentz scalar coefficients. Note we have invoked
here the Haag, Lopuszanski, Sohnius theorem which tells us that there are no
(3,1) or (1, 3) symmetry generators.
To see that the Z§ all vanish, the first step is to plug Eq. 5 into the Jacobi
identity:
, ([Q4, Prm], Pn] + (cyclic) =0 . (6)

Using Eq. 210 this yields:
~4i(ZZ")508,..Q8 =0

B “mna

) (

-1
—
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which implies that the matrix ZZ" vanishes.

This is not enough to conclude that Z§ itself vanishes. but we can get
more information by considering the most general form of the anticommutator
of two @’s:

{Q4, Qg} = €qp XA8 £ g 0T T Mma YA (8)
Here we have used the fact that the rhs must transform as (0,0) + (1,0) un-
der the Lorentz group. The spinor structure of the two terms on the rhs is
antisvmmetric/symmetric respectively under a «— 3, so the complex Lorentz
scalar matrices X4® and Y ##Z are also antisymmetric/symmetric respectively.

Now we consider €2? contracted on the Jacobi identity

{Q24,QE}, Pn| + {(Pm,Q2),QF} - {{QF, Pul,Q2} =0 . 19)

Since X48 commutes with P, and plugging in Egs. 2.5.232 and 233. the
above reduces to
—4(248 - ZBMY P, =0 (10)

and thus Z4 is symmetric. Combined with ZZ*=0 this means that ZZt=0,
which implies that Z# vanishes. giving Eq. 4.

Having established Eq. 4. the symmetric part of the Jacobi identity Eq. 9
implies that MmaY A8 commutes with P, which can only be true if Y4%
vanishes. Thus:

{Q4,QFY = capX*® . (11)

The complex Lorentz scalars X4# are called central charges: further
manipulations with the Jacobi identities show that the X48 commute with
the QA, Q44, and in fact generate an Abelian invariant subalgebra of the
compact Lie algebra generated by B,. Thus we can write:

X4B =448 B, (12)

LAB

where the complex coefficients a obey the intertwining relation Eq. 264.

2.2 The {-dimensional N=1 supersymmetry algebra

The Appendix also contains the special case of the four-dimensional N=1 su-
persymmetry algebra. For N=1 the central charges X4# vanish by antisymme-
try, and the coefficients S; are real. The Jacobi identity for {[Q, B], B] implies
that the structure constants C%, vanish. so the internal symmetry algebra is
Abelian. Starting with '

[QG’Bl] :SlQa .
@a Bl =-5Qs (13)
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it is clear that we can rescale the Abelian generators B, and write:

[ga;Bl] =Qa
@4y B =-Q4 - (14)

Clearly only one independent combination of the Abelian generators actually
has a nonzero commutator with Q4 and Qg; let us denote this U(1) generator
by R: '

Qa, 1] =Qa
{C—l?d:R,I = —aa : “3)

Thus the N=1 SUSY algebra in general possesses an internai iglobal) U(1)
symmetry known as R symmetry. Note that the SUSY generators have
R-charge +1 and -1. respectively.

2.8 SUSY Casimirs

Since we wish to characterize the irreducible representations of supersymmetry
on asymptotic single particle states. we need to exhibit the Casimir operators.
[t suffices to do this for the N=1 SUSY algebra. as the extension to N>1 is
straightforward.
Recall that the Poincaré algebra has two Casimirs: the mass operator
P? = P,P™. with eigenvalues m?, and the square of the Pauli-Ljubanski
vector X
Wn = ;em,.,,,P"M” . (18)

W has eigenvalues —m?s(s + 1), s=0), 1, 1,... for massive states. and W., =
APy, for massless states, where A is the helicity.

For N=1 SUSY. P? is still a Casimir (since P commutes with Q and Q),
but W2 is not (M does not commute with Q and @). The actual Casimirs are
P3 and C?, where

CZ —_ Cmnc‘mn ,

Cmn = BmPn— BaPn , (17)
1— .

Bn = Wm-—-Qu57Qp

This is easily verified using the commutators:

[W"HQC!] —iaiﬂchﬁP" ’
[6ﬂa’¢jn.7 Q‘Y) Qa] —QP‘mQa + ~'“:a’gﬁu::‘angﬁ ) (18)
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which imply:

[Cmn, Qa] [BmaQa]Pn - ':BnaQa]Pm

=0 . (19)

il

2.4 Classification of SUSY irreps on single particle states

We now have enough machinery to construct all possible irreducible represen-
tations of supersymmetry on asymptotic (on-sheil) physical states. YWe begin
with N=1 SUSY. treating the massive and massless states separately. Unlike
the case of Poincaré symmetry. we do not have to consider tachyons - rhey are
forbidden by the fact that {Q, @} is positive definite.

N=1 SUSY, massive states

We analyze massive states from the rest frame £, = m, ). We can write:
c?® = wmiyJ
I —_
Ji = S5 - ;n-QO'iQ ) (20)

where S; is the spin operator and ¢ is a spatial index: 7 = 1,2, 3. Both S; and
&% obey the SU(2) algebra. so

Wi, Ji] = teijnde (21)

and J? has eigenvalues j(j + l). j equal integers or half-integers.

The commutator of J; with either Q@ or @ is proportional to P and thus
vanishes since we are in the rest frame. Qg, ad are in fact two pairs of
creation/annihilation operators which fill out the N=1 massive SUSY irrep of
fixed m and j:

= 1 0
{QmQB}=2mcr3ﬁ :'.Zm(O 1) . (22)
Given any state of definite |m, j) we can define a new state
) = @1Q2im,j5) (23)
@) = Q) = 0

Thus [Q2) is a Clifford vacuum state with respect to the fermionic annihilation
operators @1, Q2. Note that [2) has degeneracy 2j+1 since jz takes values
—Jyee-Je



Acting on Q). J; reduces to just the spin operator S:. so [$2) is actually
an elgenstate of spin:

) = |m, 5,83) . (24)

Thus we can characterize all the states in the SUSY irrep by mass and spin.
It is convenient to define conventionally normalized creation/annihilation
operators:

1
a = y
1,2 \/?’;Ql.z

. 1 —
G2 = _r—Zin,é (25)
Then for a given 1) the fuii massive SUSY irrep is:
) |
al Q) , (26)
a} |Q)
Loy 1ot
—=2y8, Q) = ——=ala!l |0
Zgeielin) = -—salall0)

There are a total of 4(2j+1) states in the massive irrep.
We compute the spin of these states by using the commutators:

1 1
[Ss, (?) | = l) < azr) : (27)
a,y - —Gy

Thus for [} = im, 7, 73) we zet states of spin s3 = j3, j3—‘— +=, j3.

As an example. consider the j=0 or fundamental \—1 masswe irrep.
Since |Q) has apm zero there are a total of four states in the irrep. with spins
.93 =0, - ;, 3+ and 0. respectively. Since the parity operation interchanges
c;1 with a2, one of the spin zero states is a pseudoscalar. Thus these four
states correspond to one massive Weyl fermion. one real scalar. and one real

pseudoscalar.

N=1 SUSY, massless states

We analyze massless states from the Ilght like reference frame P, = (E, 0,0, E).
In this case

C? = —2E*By ~ B3)’ = —iEzc‘e@Qz@czz =0 . (28)



Also we have:

{Qi,gi} = 4E
{Q4, @3} 0 . (29)

It

We can define a vacuum state Q) as in the massive case. However we notice
from Eq. 29 that the creation operator Q3 makes states of zero norm:

UQ2Q5i =1 . (30)

This means that we can set Q5 equal to zero in the operator sense. Lffectively
2 ¢4 3
there is just one pair of creation/annihilation operators:

| —
e O (i
© =B B
|?) is nondegenerate and has definite helicity A. The creation operator a!
transforms like (¢, %) under the Lorentz group, thus it increases helicity by
1/2. The massless N=1 SUSY irreps each contain two states:

L
ﬂ—__,—\/—EQl ,

1) helicity A,

al |9) helicity A +

N |

(32)

However this is not a CPT cigenstate in general. requiring that we pair two
massless SUSY irreps to obtain four states with helicities A. A+%. —,\—%. and
—A.

N>1 SUSY, no central charges, massless states

Here we have N creation operators al,. These generate a total of 2V states in
the SUSY irrep. The states have the form:

1
\—/-_;aj,l L.al 1), (33)

with degeneracy given by the binomial coefficient (f) Denoting the helicity

of |Q) by A, the helicities in the irrep are A. /\+%, .../\+%. This is not a CPT
eigenstate except in the special case A = —N/4. Exampiles of some of the more
important irreps are given in Table L. '



Table 1: Examples of N>1 massiess SUSY irreps (no central charge)

no. of states

!

|8 128 ] 36 170156288

o
-

N=2
Qo helicity 0| 3 i 1
no. of states 1 2 | l Qo and Q2_, together
make one N=2 on-shell
Q-4 helicity | -1 | —-% ! )} vector multiplet.
no. oi states { | | 2 | 1
Q_% helicity | -31 0 i | A massless N=2 on-shell
no. of states E I ’ 2 ! | hypermultiplet.
N=4
Q-1 helicity -1 | -3 3 1 | A massless N=4 on-shell
no..of states 1 4 6 4 1 | vector multiplet.
N=8
|
Q_, helicity P=2 —-3— —1 —% 0o % . % 2 | An N=x gravity

multiplet.

N>1 SUSY, no central charges, massive states

In this case we have 2N creation operators (a4)'. There are 22V (2 + 1) states

a

in a massive irrep. Consider. for example, the fundamental N=2 massive irrep:

Qo .

spin 0 % 1
no. of spin irreps 3 4 1
total no. of states 3 &8 3




There are a grand total of 16 states. Lot us describe them in more detatl:

I state : Q) { spin 0 state
4 states : a)t 1) 4 spin 3 states
6 states : la.““)‘(a“")r IQ) 3 spin 1 and 3 spin 0 states
4 states : fagi) a2y (ad2)! Q) 1 spin 1 states
1state: - {ag!)!lad2)!(ads)t(ads)t Q) L spin 0 state

The only counting which is not obvious is 6 = 4 spin I =3 spin U: this ¢an be
verified by looking at the Lorentz group tensor products:

S 1 co1 1
Wit b L, Ty o
._.)72» - .Oszjgl(Oizj 9(012)1
«mO)T[uL1)+(0Jn]+<m0)
The key point is that 1a?)"(a4)"|Q). by antisymmetry. only contains the sin-
glet.
N>1 SUSY, with central charges

In the presence of central charges Q; 4, @2 cannot be interpreted in terms of
creation/annihilation operators without rediagonalizing the basis. Recall

{Q4,Q5}
{6&/{7 aﬁﬂ}

EaﬂXAB )

—e.5Xip i34)

where X458 is antisymmetric and. following Wess and Bagger. we impose the
convention X48=_X 5.

Since the central charges commute with all the other generators. we can
choose any convenient basis to describe them. We will use Zumino's decom-
position of a general compiex antisymmetric matrix: °

XA = ugx°Pwn)g (35)

where. for N even. X¢P has the form

(Z1€%%) 0 ... 0
0 (Zped) 0

) (36)
0 0 (Z e
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where €2*=ig?. For N odd. there is an extra right-hand column of zeroes and

bottom row of zeroes. In this decomposition the “eigenvalues™ Zy, Z,. ... Z[E]
3
are real and nonnegative.
Consider now the massive states in the rest frame. In the basis defined by
Zumino’s decomposition we have:

'(anaﬂ'} = 2”’”255:51{} 3
{Q2E, QMY = eapetiMzy (37
{Qaur>QPaopmt = —€44€a00LMIM

where the internal indices A. B have now been replaced by the index pairs
{a, L), (b, M). with a,b = 1,2 and L, M = 1,2,...[%’-]. Here and in the
following, the repeated M index is not summed over.

[t is now apparent that there are 2N pairs of creation/annihilation opera-
tors:

1 S
af = ﬁ[ 2t €apQs2,877]
1 e .
Lyt _ . =087 ~aL
(az)' = 7 [Q61L+€&g‘7 Q3 ] )
1 —
be = —=[QiF - €asQy2.5°%) (38)
Lyt _l_ = _ 087 ~2L
(ba) - \/—)‘ QalL €557 Q

The Lorentz index structure here looks a little strange. but the important point
is that Q, transforms the same as Q under spatial rotations. Thus (ak)r,
(64} create states of definite spin.

The anticommutation relation are:

{ag, (@'Y = (2m+Zmiodsb0

8
{ba, (55"} = (2m—Zm)o%65 (39)

This is easily verified from Egs 37. 38 using the relations:

~o96, . _  _ 0.
€asT €7ﬁ = O'QB ,
=06 o
€350 Teay = Oas - (40)



BPS-saturated states

Since {a,a'} and {b,b'} are positive definite operators. and since the Zp are
nonnegative, we deduce the following:

e For all Zur in any SUSY irrep:

Zq <2m . (41)

e When Zy < 2m the muitiplicities of the massive irreps are the same as
for the case of no central charges.

o The special case is when we saturate the bound. i.c. Za = 2m for some
or all Zp. If e.g. all the Zy saturate the bound. then all of the (b2)t
are projections onto zero norm states: thus effectively we lose half of the
creation operators. This implies that this massive SUSY irrep has only
9N (2j+1) states instead of 22N (2541) states.

These reduced multiplicity massive multiplets are often called short mul-
tiplets. The states are often referred to as BPS-saturated states, because
of the connection to BPS monopoles in supersymmetric gauge theories. 10

For example, let us compare the fundamental N=2 massive irreps. For
N=2 there is only one central charge, Z. For Z < 2m we have the long
multiplet already discussed:

Qlone . spin 0 L
no. of spin irreps 5 1 1
total no. of states 5 8 3

There are a grand total of 16 states.
For Z = 9m we have BPS-saturated states in a short multiplet:

Q’0h°" : spin 0 % 1
no. of spin irreps 2 1 0
total no. of states 2 2 0

There are a grand total of -1 states. Note that the spins and number of states
of this BPS-saturated massive multiplet match those of the N=2 massless
hypermultiplet in Table 1.

12



Let us also compare the j:% N=2 massive irreps. For Z < 2m we have a
long multiplet with 32 states:

Qlfng : spin 0
7

ST

no. of spin irreps 4+ 6 4 1

total no. of states 1 12 12 4

For Z = 2m we have a short muitiplet with 8 states:

(ysport . spin 0 1 1 3
no.of spinirreps 1 2 1 (
total no. of states | 1 3 0

Note that the spins and number of states of this BPS-saturated massive mul-
tiplet match those of the N=2 massless vector multiplet {allowing for the fact
that a massless vector eats a scalar in becoming massive).

Automorphisms of the supersymmetry algebra

In the absence of central charges, the general 4-dimensional SUSY algebra has
an obvious U(N) automorphism symmetry: :

QA - UA5QE, Qaa — QU4 (42)

where U453 is a unitary matrix. SUSY irreps on asymptotic single particle
states will automatically carry a representation of the automorphism group.
For massless irreps U(N) is the largest automorphism symmetry which respects
helicity.

For massive irreps. we have aiready noted that Q“ and Q, transform the
same way under spatial rotations. Assembling these into a 2N component
object. one finds that the largest automorphism group which respects spin
is USp(2N), the unitary symplectic group of rank N.!! In the presence of
central charges. the automorphism group is still USp(2N) provided that none
of the central charges saturates the BPS bound: this follows from our ability to
make the basis change Egs. 38. 39. When one central charge saturates the BPS
bound, the automorphism group is reduced to USp{N) for N even. USp(N +1)
for N odd. ’

The automorphism symmetries give us constraints on the internal sym-
metry group generated by the By. In the case of no central charges U(N) is

13



the largest possible internal symmetry group which can act nontriviaily on the
Q@’s. With a single central charge. the intertwining relation Eq. 264 implies
that USp(N) is the largest such group.

Supersymmetry represented on quantum fields

So far we have only discussed representations of SUSY on asymptotic states.
not on quantum fields. Q4, @4 can be represented as superspace differential
operators acting on fields. The Clifford vacuum condition Eq. 23 becomes a
commutation condition:
Qg tiz)) =1t . i43)
For on-shell fields. the construction of SUSY irreps proceeds as before.
with the following exception. If Q(z) is a real scalar field. then the adjoint of
Eq. 43 is
[Qa, Q) =10 . (44)

In that case, Egs. 13. 44 together with the Jacobi identity for {[Q(=), Q], G}
implies that (z) is a constant.

Thus we conclude that Q(z) must be a complex scalar field. This has
the effect that some SUSY on-shell irreps on fields have twice as many field
components as the corresponding irreps for on-shell states. Because we already
paired up most SUSY irreps on states to get CPT eigenstates, this doubling
really only effects the SUSY irreps based on the special case 2, A = —N/4.
The first example is the massiess N=2 hypermultiplet. On asymptotic single
particle states this irrep consists of 4 states (sce Table 1); the massless N=2
hypermultiplet on fields. however. has 8 real components.

2.5 N=1 rigid superspace

Relativistic quantum field theory relies upon the fact that the spacetime coor-
dinates z™ parametrize the coset space defined as the Poincaré group modded
out by the Lorentz group. Clearly it is desirable to find a similar coordinati-
zation for supersymmetric field theory. For simplicity we will discuss the case
of N=1 SUSY, deferring N>1 SUSY until Section 5.

The first step is to rewrite the N=1 SUSY algebra as a Lie algebra. This

requires that we introduce constant Grassmann spinors §%. 64:
{0",9"}:{5&,55}:{9“,5,5}:0 . {45)

This allows us to replace the anticommutators in the N=1 SUSY algebra wirh
commutators:

(Q,6Q] = 260™6P,
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[6@,6Q] = 0 (46)
(6Q,6Q] = 0
Note we have now begun to employ the spinor summation convention discussed

in the Appendix.
Given a Lie algebra we can exponentiate to get the general group element:

G(z,6,8,w) = el~2" PntQ+0Q)g= 3™ Mmn (47)

where the minus sign in front of 2™ is a convention. Note that this form of
the general N=1 superPoincaré group element is unitary since (6Q)1=6Q.

From Eq. 47 it is clear that (z™,8%,84) parametrizes a 4+4 dimensional
coset space: N=1 superPoincaré mod Lorentz. This coset space is more com-
monly known as N=1 rigid superspace: -rigid” refers to the fact that we
are discussing global supersymmetry.

There are great advantages to constructing supersymmetric field theories
in the superspace/superfield formalism, just as there are great advantages to
constructing relativistic quantum field theories in a manifestly Lorentz covari-
ant formalism. Our rather long technical detour into superspace and superfield
constructions will pay off nicely when we begin the construction of supersym-
metric actions. '

Superspace derivatives

Here we collect the basic notation and properties of N=1 superspace deriva-
tives.

E; e 0 5
O = g P =g =m0
—a - 8 ;
aJ = —?— , Béz‘:z—fdégﬁ ,
98, 86 ‘
g 8 B. — K&
606 = 6& y a 05 '—6ﬁ s
9%98 = _2F , aagﬂ:—eaﬂ , (48)
T = e = ey
8.0°67 = 6R97 —516F |
8.(60) = 20, , 34(68)=-20, |,
2%(69) = 4 | 3°(68) = 4
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Superspace integration

We begin with the Berezin integral for a single Grassmann parameter g:

/dGG
/do —y (49)

/dof 0 —f

Il

where we have used the fact that an arbitrary function of a single (zrassmann
parameter 8 has the Tavlor series expansion f(8) = fo+6f1.
We note three facts which follow from the definitions of Eq. 49.

e Berezin integration is translationally invariant:

Jaerersore = [a s
/de——f = 0 . {50)

e Berezin integration is equivalent to differentiation:
d
—f(8)=fi= [ do f(8) . 5
i@ =n=[a 10 (51)
e We can define a Grassmann delta function by
5@0) =8 : (52)

These results are easily generalized to the case of the N=1 superspace

coordinates 6%. 8. The important notational conventions are:

a8 = —%dﬂadG’seap ,

g _ _lg. 5.4 =
@ = —-—dladBze - (53)
d¢ = d%0d*8

Using this notation and the spinor summation convention. we have the follow-
ing identities: '
/ d*6 66

/555:1 . (54)

il
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Superspace covariant derivatives

If we wanted to treat a general curved N=1 superspace. we would have to
introduce a 4+4=8-dimensional vieibein and spin connection. Using M to
denote an 8-dimensional superspace index. and A to denote an 8-dimensional
super-tangent space index. we can write the vielbein and spin connection as
Ef{ and W™ respectively. Tle general form of a covariant derivative in such
a space is thus

D = Efy(9a + - Wi Mmn) (

o
[31]
—

where 84 =(9m, Oa, 84).

Naively one might expect that Dys reduces to dar for N=1 rigid superspace.
since the rigid superspace has zero curvature. However it is possible to show?
that N=1 rigid superspace has'nonzero torsion. and thus that the vielbein is
nontrivial. The covariant derivatives for N=1 rigid superspace are given by:

Dm = 0m
Da = du+ic80n

Dy = -34-i6P070m S (56)
D* = 3% ;6™

D° = 3 +ioTy8s0n

3 N=1 Superfields

3.1 The general N=1 scalar superfield

The general scalar superfield ¢(z,4,6) is just a scalar function in N=1 rigid
superspace. It has a finite Tavlor expansion in powers of 6%, 84: this is known
as the component expansion of the superfield:

®(z,8,0) = f(z) + 6¢(z) + Gx(z) + 88miz) + B6n(z)

+60™ Oum(z) + (96)8X(z) + (86)8%(z) + (66)(BB)d(z) .  (57)
The component fields in Eq 57 are complex: redundant terms like 6™ 8v,, have
already been removed using the Fierz identities listed in the Appendix. The
fermionic component fields ¢(z}. x(z). Alz). and ¥(z) are Grassmann odd, i.e.
they anticommute with each other and with 8. 8.

To compute the effect of an infinitesimal N=1 SUSY Lransformacio_r_]_ on
a general scalar superfield. we need the explicit representation of Q, Q as
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superspace differential uperators. Recall that tor ordinary scalar fields the
translation generator P, is represented (with our conventions) by the differ-
ential operator i9,. Let €% he a constant (irassmann complex Weyl spinor.
and consider the effect of left multiplication by a “supertranslation™ generator
G(y, &) on an arbitrary coset element Q(z, 6, 6):
Gy, €)0(z,8,8) = i~ " P HEQHEQ il -2 P 139450
— el (E )P (37 +67)Qa +(04 +45)Q7 T $6QUIQN+ 5£Q.6Q)
=Q(ic™ -y - €T L 60TE), G+ E,6+€) (53)
where. to obtain rhe last ¢xpression. we have used the commutators:
£Q,60] = %d™8Pn
€Q,6Q] = -200TE(Pn . (59)

From Eq. 58 we see that. with our conventions. P, Q. and @ have the following
representation as snperspace differential operators:

P, : 18m , _
Qu : Ba— ia;ééﬂam , (60)
ad : 5& - lgﬁa'glaam
It is now a trivial matter to compute the infinitesimal variation of the
general scalar superfield Eq.37 under an N=1 SUSY transformation:
8¢ ®(z, 4, 6) = (€Q + £Q)d(z, 86, 8)
=P+ Ex + 100 LB f + 2UBm + B0 ™€y — 0™ 00 f
+2€0n + 0™ Bvm + 1(00™€)80md + (00)(EX) — i{£0™6)80m x (61)
+{08)(£y) — 160 ™800 + 180™EBOmxX + 2(EA)(ON) + 2(E6)(6v)
—i€0™0(66)8.nmm + 100 EB0 " B0mun + 2(60)(£6)d + 0™ E(86)Omn
—:(a’"‘GOcr"GB Un + ’(59)(06)d £a™0(8 )5 A+z€a’"£(69)08mw

Using the Fierz identities. we then have that the component fields of ¢ trans-
form as follows:

bef = Eb+é€x
bpa = am+ 0T [0nf +um]
Sx* = 2Un+ PR i f ~va]
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bem = EX-lo.p0™E |

fen = £w+.—£v’" mX (62)
Seom = £om 3+ Yomé + SE0nd— il |

6eA® = ‘2£°d+36"5"‘vm+i(fame)"6mm

bepa = zgad_%gaa"‘um+i(a"‘{)aamn ,

bed = %a,,, [(Yo™€ + o™

Note the tmportant fact that the complex scalar component field d(z) trans-
forms by a total derivative.

We have thus demonstrated that the general scalar superfield forms a basis
for an (off-shell) linear representation of N=1 supersymmetry. However this
representation is reducible. To see this, suppose we impose the following
constraints on the component fields of &:

x(z) 0,

n(z) = 0 ,

vm(z) = Onf(z) , (63)
Mz) = ;ompo™

Yz) = 0 ,

dz) = --0f()

It is easy to verify that the N=1 SUSY component field transiormations Eq. 62
respect these constraints. Thus the constrained superfield by itself defines an
off-shell linear representation of N=1 SUSY (in fact, an irreducible represen-
tation). This suffices to prove that representation defined by ¢ is reducible.
In fact there are several ways of extracting irreps by constraining &, how-
ever the general scalar superfield is not fully reducible. i.e. the reducible
representation is not a direct sum of irreducible representations.

We can also use ¢ to demonstrate the importance of the superspace co-
variant derivatives Dy. Dg4. Consider 8, «®(z,6,0): this has fewer component
fields than & since. for example. there is no (69)(66) term in its component
expansion. However the commutator of 84 with £Q is nonvanishing:

{am£Q]—7'€ﬁa'ﬁa ) (64)
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and this implies that an N=1 SUSY transformation generates a (66)(68) term.
Thus 84®(z,6,8) is not a true superfield in the sense of providing a basis for
a linear representation of supersyvmmetry.

The superspace covariant derivatives. on the other hand. anticommute

with @ and Q:

{Da: Qﬁ} = {Da: 5,9}
{Da,Qs} =1{DaQz} =0 , (63)

Thus if ® is a gencral scalar superfield. then dnb. Dob. and Dad are also
superfields.

3.2 N=1 chiral superfields

An N=1 chiral superfield is obtained by the constraints Eq. 63 imposed on
a general scalar superficld. .\ more elegant and useful definition comes from
realizing that Eq. 63 is equivalent to the following covariant constraint:

Da® =0 . ‘ (66)

Covariant constraints are constraints which involve only superfields (and co-
variant derivatives of superfields, since these are also superfields). It is a plau-
sible but nonobvious fact that the superfields which define irreducible off-sheil
linear representations of supersymmetry can always be obtained by imposing
covariant constraints on unconstrained superfields.

Let us find the most general solution to the covariant constraint Eqy. 66.
Define new bosonic coordinates y™ in N=1 rigid superspace:

y™ =z™ + ic™F . (67)

We note in passing that the funny minus sign convention in Eq. 47 is tied the
fact that sign in Eq. 67 above is plus. Since

-D-t'l ym = 0 .1 '
Dz6* = 0 , (68)
it is clear that any function ®(y, 8) of y™ and 6% (but not 84) satisfies
Da®(y,8) =0 . (69)

It is easy to see that. since D4 obeys the chain rule. this is not just a particular
solution of Eq. 66 but is in fact the most general solution.
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Thus we may write the most general N=1 chiral superfield as:
®(y,8) = Aly) + V20%(y) + 86F(y) | (79)

where A(y). F(y) are complex scalar fields. while ¥%(y) is a complex left-
handed Weyl spinor. The v/2 is a convention. There are 4+4 = 8 real offi-shell
field components: this is twice the number in the on-shell fundamental N=1
massive irrep.

The full 8. 8§ component expansion is obtained by using the Fierz identity
Eq. 247. The result is:

By, 6) = Alz) + V209 (z) + 60F (z)

+i60”“§6,,.,A{’::)—&-%(09)6,,,1#(:)0’"‘5—i(GG)(ﬁ)DA(z) . ()

An infinitesimal N=1 SUSY transformation on the chiral superfield vields:

A = V2%y
% = V2UF +V2ic™6mA (72)
§F = —+2i0mypo™E

Note that 6 F(z) is a total derivative.

Antichiral superfields. i.e. right-handed chiral superfields. are defined in
the obvious way. In particular. if ®(y, 8) is a chiral superfield. then ®! is an
antichiral superfield: it satisfies

D.® = 0 ,
il Py, 8): oy

i

=z™ —ifc™8 . (73)

Since D, and D4 obey the chain rule. any product of chiral superfields
is also a chiral superfield. while any product of antichiral superfields is also
an antichiral superfield. However it is also clear that if $(y,8) is a chiral
superfield. the following are not chiral superfields:

oo
¢+ ot

For future reference. let us write down the expressions for the covariant
derivatives acting on functions of (y, 6, 6):

21



Da = 8a+2i0c7yF 0, |

D¢ = —0a ,
D® = —0% -840, (74)
D¢ = 3
where of course here 8m is a partial derivative with respect to y™ rather than
z™,

3.3 N=1 vector superfields

Vector superfields are defined from the general scalar superfield by imposing a
covariant reality constraint:

Vi(z,8,8) = V'(z,8,8) , (75)
or, in components:
f = fF,
x = ¢
m = n°
Un = Uy (76)
o=y,
d d’

Thus in components we have 4 real scalars. 2 comple,{ Wevl spinors (equiva-
lently, 2 Majorana spinors), and 1 real vector. The 8+8 = 16 real components
in this off-shell irrep are twice the number in the on-shell {2, massive irrep.

The presence of a real vector field in the N=1 vector multiplet suggests we
use vector superfields to construct supersymmetric gauge theories. But first
we must deduce the superfield generalization of gauge transformations.

Wess-Zumino gauge

If ®(y, §) is a chiral superfield, then ¢+ &' is a special case of a vector super-
field. In components:

O+ & = (A+ A") + V200 + V209 + 66F + G6F + i80™G0m (A — A7)
1 — p— -1 —

— —m —_— m _ _( » o

+\/§(99)90 ) + ﬁ(GG)Ga ¥ — ~(00)(86)0(A + A7) . (T7)
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From this we see that we can define the superfield analog of an infinitesimal
abelian gauge transtormation to be

VoaV4+d+oh | (78)

since this definition gives the correct infinitesimal transformation for the vector
component:

Uy — U +0mA (79)
A= i(4a- A%

The meaning of the "bigger™ superfield transformation Eq. 78 is that any
-superficld action invariant under abelian gauge transtormations will also be
independent of several component fields of V(z,8,8). \ore precisely. notice
that the first 5 component fields of ® + ®! in Eq. 77 are completely uncon-
strained. This means that without loss of generality we can decompose any
vector superfield as follows:

V(z,0,8) = Viwz + &+ &' | (80)

where Viyz only has 4 component fields instead of 9:

Vwz = —80™Bum + i(66)8X — i(88)6A + 1(66)(86)D

2

where. to conform with Wess and Bagger. | have changed notation slightly:

Vm — —Um ,

S

d — D
2

Vwz is known as the Wess-Zumino gauge-fixed superfield.

This decomposition is unambiguous except for the remaining freedom to
shift part of v, into the corresponding component of ® + @', ie. v, —
Y —10m(A—A"). Thus fixing Wess-Zumino gauge does not fix the abelian
gauge freedom. ‘

3.4 The supersymmetric field sirength

Note that the supersymmetry transformations do not respect the Wess-Zumino
gauge-fixing decomposition. This is somewhat disappointing since it means
that a superfield formulation in terms of V(z,#8,8) necessarily carries around
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a number of superfiuous fields. We can however define a different superfield
which has the property that it only contains the Wess-Zumino gauge-fixed
component fields v {z), A(z). and D(z).

We define left and right-handed spinor superfields W,, W4 = (W,)':

W, = ‘E(W)DQV(%"'?) ’

We

~3(DD)DaV(2,6,8) . (82)

An equivalent definition. which we will need when we go from the abelian to
the nonabelian case. is:

1

Wa = —g(D—D)e_ﬂ, Da.e?V
Ws = é(DD)eWﬁg,e"W : (83)
Waisa c‘hiral superfield:
DaWp = —}'D‘,-.(Eﬁb‘*)DﬂV(z,e,é) =0, (84)

where we have used the fact that since the D’s anticommute and have only 2
components, (D) = 0.

W 4 is an antichiral superfield. W, is not a general chiral spinor superfield.
because W, and W4 are related by an additional covariant constraint:

DsW™ = D*W, . (85)
This constraint follows trivially from Eq. 82:
DW= ¥D.W; = -=¥Ds(DDID;V
= -YDD)DD)V = —ina(ﬁﬁ)pav (36)
= DWW,

W, and W4 are both invariant under the transformation Eq. 78. Let us prove
this for Wy:

W, — —-(DD)Da(V+®+") |,

4
= Wa- E(DD)DC,Q . (since Da®' = 0)
1—f — . _
= Wsy+ ;D {Dg,Da}® , (since Dy® =0) (87)
= W, ,



where in the last step we have used:
{Ds,Da} = -20TyPm
(D’ Bn] = 0 . (38)

Since W, and W4 are both invariant under Eq. 78. there is no loss of
generality in computing their components in Wess-Zumino gauge, i.e. write

W, = -—%(D—D')D.,sz(:,G, 5
W, = —i(DD)Ed,sz(:Z:,O,E) . (89)
Since W, = W.(y, 8) we write
Vwz(z,6,8) = Vigz(y — 1656, 6,8) (90)

and expand W, in component fields which are functions of y:

. . i n
Wa = —ida(y) +0.D(y) ~ ;)-(a""o’ 8)a(Fmvn — Bnvm ) (y)
+(80)0T50,m08 (y) (91)
Wa = ida(y') +8aD") + 2(6™0"8)a(Omun ~ Fnvem) (')
~(88)5T7° 8mAs (y')

So indeed W,. W4 contain only the component fieids
A, D, fmn = Omun — Ontm

This is an irreducible off-shell multiplet known as the curl multiplet or field
strength multiplet: it has 4+1+3 = 8 real components.

Nonabelian generalization
We can exponentiate the infinitesimal abelian transformation Eqg. 78 to obtain
the finite transformation

—tAt {
eV__’e A eVetA

, (92)

where. to conform with the standard notation of Ferrara and Zumino, 12 we
now denote the chiral superfields of Eq. 78 by:

b — A,
Bt At
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To obtain the nonabelian zeneralization we write

V. — TiVa
N = THAL (93)
a 3 . . pabemc
(T*,T"] = if** T
te 79T = 6%

where the T; are the hermitian generators of some Lie algebra. The form of
the nonabelian transformation is then the same as Eq. 92.

To find the infinitesimal nonabelian transformation. we can apply the
Baker-Campbell-Hausdorff formula to Eq. 92. One can show tnat. tv first
order in A. Eq. Y2 reduces to: '3

§V = iLy;5 N + AT) + iLy acothLy a(A — A1) (94)
where the operation LxY denotes the Lie derivative:

LY = [X)Y] ,
(Lx)zY = [X, [X,Y]]v , . (95)
etc.

Eq. 94 is meant to be evaluated by its Taylor series expansion. using

N 23 gt » (
zcothz = +3 .;5+"' . {96)
This becomes much more illuminating if we fix the nonabelian equivalent
of Wess-Zumino gauge. Unlike the abelian case. the reiationship between the
component fields of V(z,8,6) and A(y, ) in the Wess-Zumino gauge fixing is
nonlinear, due to the complicated form of Eq. 94. However the end result is the
same: Virz(z,6,60) is as given in Eq. 81. Furthermore. as in the abelian case.
the Wess-Zumino decomposition does not fix the freedom to perform gauge
transformations parametrized by the scalar component of ®—®! = i(A+A").
Consider then the transformation Eq. 94 with V replaced by Vi z, and
with only the scalar component of A + A! nonvanishing (which also implies
that only the 8@ component of A — Al is nonvanishing). Clearly only the first
term in the Taylor series expansion of the hyperbolic cotangent remains. since

. . . . =3 .
the next higher order term gives something proportional to °¢". Thus having
fixed Wess-Zumino gauge the infinitesimal nonabelian gauge transformation is
just

§V =i(A = AN = %[(A + AN, V] . (97)
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This implies the usual nonabelian gauge transformations for the component
fields vm(z), A(z). and D(z) {vm(z) is the nonabelian gauge field while A(z)
and D{z) are matter fields in the adjoint representation).

Wa and W, are given by Eq. 83 in the nonabelian case. Let us com-
" pute how W, and W, transform under Eq. 92. First notice that. under the
transformation Eq. 92:

e—ZVDac'.’V - 9—12A0—2V (quzv) Qt2A + e—l?ADaesZA , (98)

which follows from the fact that DaAt = (. Thus. using also the fact that Ds
commutes with \. we see that

‘Va . ‘_-12AW0612A _ _e—121\!DD)Dacz2A . (99)
8

Furthermore the second term vanishes, just as in Eq. 87. using the identities
Eq. 83. So our final result is that W, and W, transform covariantly in the
nonabelian case:

ch — e-iﬂAWaeﬂA ,
Wi — e 3T 20T (100)

Let us be more explicit in the nonabelian case about the derivation of
the component expansion for W,. There is no loss of generality in computing
this in Wess-Zumino gauge. From the definition Eq. 83 we have the explicit
expression:

We = ——(DD)e Vw3 D,e?Vws | (101)

= {(DD\D,Vwz ~ —(DD)VWZD Vivz ~ —»DD)D Vi

»—l.—-(‘/|~

where we have used our knowledge (see Eq. &1} of the component expansion
for Viwz(y — 16086,86,8):

Vwz(y - i608,6,8) = —80™Bun(y) +i(06)FX(y) — i(FB)OA(y)
+2(66)(88) (D) +i™um(y)) . (102)

Using the form Eq. 75 for D, acting on functions of (y,8,8). we have:

DaViwz = ~0758 vmiy) + 28a8M(y) — i(F0)Nal(y)

+0,(88) (D (‘+ia“vm(ynéiwe)(a’"&"e)aamvn(y> (103)
+(66)(66)07 0 38



A little more straightforward computation gives:

DaVid 7 = 04(80)0" v (104)
as well as:
VwzDaVwz = -0a(B8)"vmiy) + 20067079 (0)[vm, vr)
—%i(ﬁﬂ)(éﬁ)ama[vm,;\b] : (105)

Putting it all together, we have:

Wa = —ida(y) + 82 D(y) = 0385 Fnniy) + (06)075 Vm My o (106)
where
Fan = OmVUn — Oam + i[‘Um, U”] !
Ukl = 0¥ tifum, M) (107)

Fonn is the Yang-Mills field strength, while Vi, is the Yang-Mills gauge covari-
ant derivative.
We also need

[
We = —<(DD)e " D% (108)
raising the index on Eq. 106 and Fierzing. we get:
W = —iA%(y) + 8 D(y) + P oF" Frnly) — (88)5™% Vi A5ly) . (109)

3.5 N=1 linear multiplet

In the previous subsection we obtained the field strength multiplet by starting
with the chiral spinor superfield W,, and imposing the additional covariant
constraint Eq. 85. Let us again start with a chiral spinor superfield @, by =
(®a)!, and construct a new superfield L(z, 8, 6) as follows:
L(z,6,8) =i (D", + D) . (110)

The superfield L(z,9,8) is real. since

— —an |

(Dé.cp ) = D,®% = -D%®, ; (111)
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so L(z,8,8) is a vector superfield which satisfies two additional covariant con-
straints:
(DD)L = (DD)L =0 . {112)

These constraints follow trivially from the fact that & is chiral. and (D)? =
(D)2 =0. 3

The component fields of L(z, §,8) comprise the linear multiplet. These
are a real scalar C(z). a compiex left-handed Weyl spinor x,. and a real
divergenceless vector field A,, 6™A,, = 0. Thus the linear multiplet has
14+4+3 = 3 real components.

4 N=1 Globally Supersymmetric Actions

Recall from the previous section that both the F component of a chiral super-
field and the D component of a vector superfield transform by a total derivative
under an N=1 supersvymmetry transformation. Thus we immediately deduce
two classes of N=1 globally supersymmetric actions:

/d"z: U d*9 ®(y,8) + /d’@qﬂ(yf,ﬁ)} (113)
1s an invariant real action for any chiral superfield ®(y, 8). while
/d“z/d*a V(z,4,8) (114)

is an invariant real action for any vector superfield V(z, 6, §).

4.1 Chiral superfield actions

The Wess-Zumino modeci ! is the simplest (sensiblel N=1 SUSY model in four
dimensions. The action is

/d‘* /d"a ot — /d‘*z Uaﬂe (imqﬂ - ggqﬁ) +he| (115)

where & is a chiral superfield.
Let us work out the part of this action containing bosonic component fields.
The bosonic components of @ and &' are:

®(y,0) = A(z)+60F(z) +i80™08,, A(z)
~-(60)(88)0A(z)

1y, 6) = A(z) +66F"(z) — 160™0 A" (z) (116)
—~{66)(@8)0 4" (=)
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Thus: . . .
<I>'<I>| =loara-lanasFRalomatana (117)
6696 1 4 2
where to obtain the [ast term we have used the Fierz identity Eq. 247.
We also have

[1mq>’ + §g<1>3] = mAF + gA*F (118)

3 a0

so the part of the Wess-Zumino action containing only boseonic fields is:
/d“z [6™A*0mA + F*F — imAF + gA*F + li.c.)] (119)
We immediately notice that this action contains no derivatives acting on

F(z). ie. F(z)is an auxiliary field which can be eliminated by solving its
equations of motion:

5C R 2
6L . o3 _
P - F—-mA® —g(A")* =0 . (120)

This means we can write the bosonic part of the Wess-Zumino action as just
/d“: [@™A8nA -V(4,4%)] (121)

where the scalar potential V{4, A") is given by:
V(4,A%) = |F|? = [mA* + g{A")¥][mA + ¢4?] . (122)

More generally we could write

/d‘*:/d‘*é <1>'¢>—/d4z [/d’B W(d) +h.c.] , (123)

where the superpotential W(®) is a holomorphic function of ®. i.e. a
functional only of ®, not ®!. In this more general case the scalar potential is

w
6P i3=4

Note that the scalar potential is obviously positive definite.

Since a cubic superpotential leads to a quartic scalar potential. we also
see that the Wess-Zumino model is the most general unitary. renormalizable
four-dimensional SUSY action for a single chiral superfield.

Ve(4,A%) = |FP? =| (124)
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An even more general construction than Eq. 123 is
L= /d‘*a K(®' @1ty - [/d28 W(d*) +he.| (125)

where K(®*, <I>jr) is called the Kdhler potential. and we now have an arbi-
trary number of chiral superfields ®*. The Kihler potential is a vector super-
field: unlike the superpotential it is obviously not a holomorphic function of
the @*.

From the component expansion Eq. 71 it is clear that the Kahler potential
produces kinetic terms with no more than two spacetime derivatives. If we
replace some of the ®' by covariant derivatives of superfields, we will either
obtain a higher derivative theory, or a theory which can be collapsed back to
the form Eq.125. Thus if we exclude higher derivative theories Eq.125 is the
most general action for (not necessarily renormalizable) N=1 SUSY models
constructed from chiral superfields.

4.2 N=1 supersymmeiric nonlinear sigma models

Bosonic nonlinear sigma models in D-dimensional spacetime have an action of
the form:

i/dnggj(A) O™ A (2)0m AP (2) (126)

where the A*(z) are real scalar fields. The functional gi; (A} can be thought of
as the metric of a target space Riemannian manifold with line element

ds? = g,; dA'dA’ . (127)

Nonlinear sigma models are not in general renormalizable. except in the case
D = 2 with g;; the metric of a symmetric space. !5
The general chiral superfield action Eq.125 defines the supersymmetrized
- version of 4-dimensional nonlinear sigma models. '® To see this. note that
Eq. 117 implies that the kinetic term for the complex scalar components Al(z)
is
Gije Om A (2)O™AY | (128)

where:
o 52K (A%, A*)
= T a5 A
31
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Since the Kahler potential is real. the target space metric g;;. is hermitian.
To obtain a correct sign kinetic term for every nonauxiliary scalar field. we must
also require that g;;. is positive definite and nonsingular: this implies (mild)
restrictions on the choice of the Kihler potential.

A complex Riemannian manifold possessing a positive definite nonsingu-
lar hermitian metric which can be written (locally) as the second derivative of
a scalar function is called a Kdahler manifold. Thus Eq.125 defines super-
symmetric generalized nonlinear sigma models whose target spaces are Kéhler
manifolds.

This is a rather powerful observation. since it implies that models with
horrendously complicated component field Lagrangians can be characterized
by the algebraic geometry of the target space. As an exampie. we will discuss
the possible holonomy groups of sigma model target spaces.

Consider the parallel transport of a vector around a contractible closed loop
using the Riemannian connection in a D-dimensional Riemannian space. The
transported vector is related to the original vector by some SO(D) rotation.
The SO(D) matrices obtained this way form a group, the local holonomy
- group of the manifold. Obviously the holonomy group is either SO(D) itself
or a subgroup of it. Four important examples are given below (we use the
convention that Sp(2D) is the symplectic group of rank D):

Manifold Maximum Holonomy Groﬁp
General Riemannian space with real dimension D: . . . . . . . SO(D)

Kahler manifold with complex dimension D.

real dimension2D: . . . . . . . . .. ... ... ......UD
HyperKahler manifold with real dimension 4D: . . . . . . . . Sp(2D)
Quaternionic manifold with real dimension 4D: . . . . Sp(2D) x Sp(2)

Note that the Kahler structure Eq. 129 (and thus also the action) is in-
variant under a Kahler transformation:

K(A', A"7) - K(A', A™) + A(AY) + AT(4™) . (130)

It is also clear that both the K&ahler structure Eq. 129 and the Riemannian
structure Eq. 127 are preserved by arbitrary holomorphic transformations of
the target space coordinates A*.
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4.3 N=1 supersymmeiric Yang-Mills theory

We recall that W, is a chiral spinor superfield and that a gauge transformation
on the vector component of W, is induced by the superficld transformation

W,y — e AW e384 (131)

It follows that a gauge invariant supersymmetric action is
2/«1‘: /d2o tr WeW, (132)

= /d‘*w [—1anF"‘" - %anﬁm” ~iAe™ Vi A+ D3|
4 . 2

where we have used the explicit component expansions Egs. 106.109. The dual

field strength is defined as:

rmn

1
;€ T (133)
This action is not real and lacks any dependence upon the Yang-Mills gauge
coupling g. The duality-friendly way to remedy these deficiencies is by intro-
ducing a complex gauge coupling T:

Oym 4r

T = ——

2 T (134)

where fypy is the Yang-Mills theta parameter. The N=1 Yang-Mills action we
want is then

LI [T/d'*: /d26 wwew,l - (135)
lok;e J
1 1

= = /d*: tr {-EF,,,,‘F'"" —iAc™ T, A+ -D? (136)
g 4 2

Bym 4 Fmin
—m/d ItranF

The minus sign in front of the fyy term is correct given the minus sign con-
vention of Eq. 47.

Under a gauge transformation. chiral superfields @ in the adjoint repre-
sentation transform as:

b — e—-v.ZA(b ,

df . pleizA’ (137)
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Thus tr ®!® is not gauge invariant. However from Eq. 97 we see that the
following is a gauge invariant kinetic term for chiral superfields:

trdfe?Vd . (138)

In fact this is gauge invariant for ¢ in an arbitrary representation R. not just
the adjoint. In this case A=t% \,, where the tJ; are matrices in the represen-
tation R. Thus Eq. 138 is stiil gauge invariant provided that all the tensor
products contain the singlet. This is indeed true because the tensor product of
R with its conjugate R contains both the singlet and adjoint representations.
while every term in the series expansion of exp(2V’) also contains either the
singlet or the adjoint (or bothi.

Thus. supposing [ have cniral superfields &' transforming in representa-
tions R;, the gauged version of the Wess-Zumino action is:

tr fd‘z/ d*0 @ 2V 3
[ . .
—tr /d“z L/dzf? (éTTl{j(b‘@ + i—ggjub‘d)’(b") +hef . (139)
Note that by gauge invariance my; can only be nonvanishing if
R,=R; . {140)

Similarly, gijx can only be nonvanishing if R;x R; x R contains the singlet.

The gauged kinetic term Eq. 138 contains a D-term A*DA. The only
other dependence on the auxiliary field D is the term D?/2¢* in the Yang-
Mills action. Thus when we eliminate this auxiliary field by its equation of
motion we find

Da

—g? Ay AL tr (T°T°T°)
1 : agc -
_;,g’f e ALAL (141)

where the second line follows from the fact that the adjoint representation is
always anomaly-free. Thus:

D=T°D, = ggz[A, A7 . (142)

This implies that in the coupled Yang-Mills-Wess-Zumino model there is a new
contribution to the scalar potential:

Vp= —D = 38— (145, 4°)° (143)



So altogether the complete scalar potential is the sum of positive definite F
and D-term contributions:

. " 1
V(AL A ) =Vp+Vp = |F)?+ —D? (144)
2g°

If we forget about renormalizablity we can write a very general N=1 action
by gauging Eq. 125:

L= /d‘*e K(d*, @ite?V) _ U die w(ad') + h.c.}
r ,
4-5—17-;lm tr/dqz/dze trf(d)")W"Wa] , (145)

where f(®*) is a new holomorphic function called the gauge kinetic function.
Note that every term in f(®*) must transform like a representation which is
contained in the tensor product of two adjoints.

5 N=2 Globally Supersymmetric Actions

5.1 N=2 superspace

There are several different ways to extend our treatment of N=1 rigid super-
space to the case of N=2 rigid superspace. }” Some methods, e.g. harmonic
superspace. build in the SU(2) automorphism symmetry of the N=2 gener-

ators QL, Q2.
We will make do with the most naive extension of N=1 to N=2 superspace

parameterizations:

82, 85 — 6% 84, 6%, 84
Da - Da: Da

Dy — Dg, Dg (146)

/ d9 - / d*8d*4

If we want to restore the SU(2) giobal R symmetry, we should think of
(0%,8%) etc. as SU(2) doublets.

5.2 N=2 chiral superfields

An N=2 chiral superfield ¥(z, 8,8, é, ;) is defined as an N=2 scalar superfield
which is a singlet under the global SU(2) and which satisfies the covariant
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constraints
Da¥(z,6,6,6,6) = 0 ,
Da¥%(z,6,8,6,6) = 0 . (147)
It is convenient to introduce new bosonic coordinates
g™ = 2™ +180™F + 6™ (148)
which obviously satisfy
Dai™ = Daj™ =0 . £149)

If we expand an N=2 chiral superfield in powers of é the components are N=1
chiral superfields. Thus:

W = (g, 0) + 1v20°W,(5,0) + 86G(3,8) (150)

where ‘D(y+iéc”‘é,0) and G(y+i§a"‘é,0) are N=1 chiral superfields (note the
effective "y” coordinate is shifted by i60™8), and W(y+i8o™§,8) is an N=1
chiral spinor superfield. i

Since ¥ is an SU(2) singlet. while (8*,6%) is an SU(2) doublet. it follows
that the fermionic components % of ® and A of W, also form an SU(2) doublet.
On the other hand the bosonic component fields A of ¢ and v of W, are SU(2)
singlets.

5.3 N=2 supersymmetric Yang-Mills theory

Suppose we write
¥(y,8) - Ti5%a(v,6) . (151)

Then, since
= WW,

\n"
9686

+2G0| (152)
88 86

the obvious form for N=2 Yang-Mills theory is:

L im [T/d‘*z/d’od?étr lxp’] . (153)
i 2

This clearly describes an N=1 Yang-Mills theory coupled to chiral superfields
in the adjoint representation. Unfortunately something is wrong, since the
second term in Eq. 152 is not a sensible Lagrangian for chiral superfields.
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Clearly what we want is to be able to regard G(§, 8) as an auxiliary superfield.
and thus eliminate it in favor of ¢ and V. reproducing (at least) the N=|
gauge invariant kinetic term Eq. 138.

Thus. while Eq. 153 is the correct action for N=2 Yang-Mills theory, we
must impose additional covariant constraints on the N=2 chiral superfield 0.
The correct constraints turn out to be:

(D**D4)¥ = (DD )u' (154)

where a, b are global SU(2) indices:

) . (155)

D* = (D,D) ,
D* = (D,D

Rather than soive these constraints directly. it is much easier to simply
assume that G can be eliminated in favor of ® and V. then deduce the correct
expression from the requirement of gauge invariance (i.c. gauge invariance in
the N=1 sense). Roughly speaking, we need something like

G(§,8) ~ d'e?V . (156)

However, while the right-hand side transforms correctly under gauge transfor-
mations, it is clearly not an N=1 chiral superfield. So consider instead the
more sophisticated expression:

G(g,e):/d’éqﬂ(g—ieai,é)ez"w-“’”“f) , (157)

where the integral is meant to be performed for fixed 3.

The result of the integral is obviously a function only of 3 and 6. so G(, 8)
thus defined is an N=1 chiral superfield. as required. Under the N=1 superfield
transformation which induces a gauge transformation. the integrand of Eq. 157
transforms as:

oteV ‘I)TezVei2A(ﬂ—iﬂa§+iaaE,9)

= ¢Tezvei2!\(ﬁ,0) , (158)
so we can pull the exp(:2.A(y, 8} factor out of the integral. Thus
G(3,6) — G(g,8)e4P9) (159)

as required for gauge invariance.
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The overall coefficient of 1 in Eq. 137 is fixed by the giobal SU(2) symme-
try. As we noted above the fermionic components ¥ of ® and A of W, form
an SU(2) doublet. Thus the relative coefficient of the kinetic terms for % in
G® and A in W2W, must be equal.

The resulting N=2 Yang-Mills theory is thus equivalent to N=1 Yang-Mills
coupled to matter fields in the adjoint representation. There is no superpoten-
tial, but there is a scalar potential coming from the D-term. The nonauxiliary
fields form an off-shell N=2 vector multiplet: vn, A. and the global SU(2)
doublet (¥, A). On-shell this multiplet gives 4+4 = x real field components.
which of course agrees with the counting for the massless N=2 vector multiplet
of single particle states.

5.4 The N=2 prepotential

If we forget about renormalizability. we can write a much more general action
for N==2 chiral superfields satisfying the covariant constraint Eq. 134:

4—11-Im U d*z/d’ﬁd’é tr}"(\Il)] , (160)

where the holomorphic functional F(¥) is called the N=2 prepotential.
Obviously

F(¥) = ETW’ (161)

gives back the classical N=2 Yang-Mills action of Eq. 153.
Let us define

AF(®)
fd((p) = aq) )
PAPF(D)
Fa(®) = 39,59, (162)

Then the general Lagrangian can be written in terms of N=1 superfields as
follows:
L

4TIm [/429 %fu,,(<1>)W““Wg +/d"9 (Bre?V )2 F (@) . (163)

Thus from the N=1 point of view we have a special case of Eq. 145: the
superpotential vanishes, the Kahler potential is
K =1Im[(®'e? ) F(®)] (164)
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and the gauge kinetic function is
F(®) = FouT°T® . (165)

Notice that in this more general N=2 action the scalar fields A® describe
a nonlinear sigma model whose target space Kihler potential has the special
form above, i.e. it can be written in terms of a derivative of a holomorphic
function. The target space is a special Kihler manifold known as the “special
Kahler” manifold. !®

5.5 N=2 hypermultiplets

While ¥ was assumed to be a singlet under the global SU(2) symmetry. we
can also consider a general N=2 scalar superfield which is an SU(?2) doublet:

%(z,6,8,6,6)

An N=2 hypermultiplet superfield is then defined by the covariant constraints

Di®® = -e*Dioc
Didt = ie“bﬁgqf . (166)

These constraints simply remove the isotriplet parts of D2®* and EZ@":

1 1

[;] + [;] = [O}anti:ymm. + [l]lymm. - (167)

The independent component fields are:

A%(z) complex scalar isodoublet
YalZ), Xalz) two isosinglet spinors
F3*(z) , complex ahxiliar_v scalar isodoublet

On-shell this implies 4+4 = 3 real components. which as we have already noted
is twice the number in the massiess N=2 hypermultiplet of single particle states.
A free superspace action for an N=2 hypermultiplet superfield ®2 is

/d"zD‘“Df; ' DDt . (168)

With more difficulty. we can couple N=2 hypermultiplets to N=2 Yang-Mills:
the details are not particularly illuminating.
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Note that there can be no renormalizable self-interaction for ¢ since there
is no cubic SU({2} invariant.

We can construct N=2 generalizations of nonlinear sigma models out of
the hypermuitiplets. It is easiest to start with the N=1 case in components

Gijo OmA'(z)0™AY + ..., (169)

then impose the extra constraints of N=2 supersymmetry. The end resuit 19
is that the target spaces of N=2 hypermultiplet nonlinear sigma models are

hyperKahler manifolds.

6 Supergravity
So far we have only considered global supersymmetry, generated by

EQ+EQ

with €9, £4 constant Grassmann parameters. If we want local supersyms-
metry, we should promote these parameters to functions of spacetime:

€, &5 — €%(z), La(z) . (170)

Rigid superspace then becomes curved superspace. From the superspace
vielbein E#; and spin connection Wj3'" we can construct the superspace cur-
vature and torsion:

B A
Runa®, Tun

Recall that N=1 rigid superspace has aiready nonzero torsion. so we can-
not constrain all components of the curved superspace torsion to vanish as we
do in general relativity. On the other hand the superspace vielbein and connec-
tion have too many independent components to define a sensible theory. Thus
the main difficuity in constructing supergravity theories is finding and solving
an appropriate set of covariant constraints. This gets very complicated. ?°® and
is beyond the scope of these lectures.

Let us instead quote resuits. One can construct an off-shell supergravity
multiplet with the following field content:

es , vierbein — spin 2 graviton

a, vector-spinor — spin 3/2 gravitino
by, auxiliary real vector field
M, auxiliary complex scalar field
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From these fields we can construct a supergravity Lagrangian:

BTGL = —-eR — ~e|M|? + 2eb®b,
2 3 3

1 - -
ki - ;
+oee ™ (Ve85 DmPn — Y201 Do tn ) (171)
where:

G = Newtons constant,

e = deteg,

R = Ricci scalar curvature,

Dm = covariant derivative for spin 3/2 fields.

The action is invariant under
e general coordinate transformations,
e local Lorentz transformations.
e local N=1 supersymmetry.

Let’s count the off-shell degrees of freedom of N=1 supergravity. Because
the action is invariant under three types of local symmetries we should only
count gauge invariant degrees of freedom:

ey, @ dx4=16
—4 general coordinate (™
—6 local Lorentz A%

= 6 bosonic real components

Y& . ix4=16
—4 local N =1 SUSY £°

= 12 fermionic real components

by : real vector

= 4 bosonic real components

M : complex scalar

= 2 bosonic real components
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Thus we have a total of 12 bosonic and 12 fermionic real components in the
off-shell N=1 supergravity muitiplet. On-shell we have only 2 +2 components.
corresponding to a massless spin 2 graviton and a massless spin 3/2 gravitino.

Of course. we really want to be able to couple N=1 supergravity to N=1
supersymmetric Yang-Mills and N=1 chiral superfield matter. all in a way
which is consistent with local supersymmetry. This is again a complicated
problem and the final result is not particularly intuitive. 2

We can also extend 4-dimensional N=1 supergravity to N=2. }. 4. or &
supergravity. These extended supergravities automaticaily couple gravity to
gauge fields and matter fields in a way consistent with local supersymmetry.
just as N=2 Yang-Mills couples zauge fields to matter in a way consistent with
global supersymmetry. [xtended supergravities are easier to construct and
understand if we use dimensional reduction. For example. ‘I-dimensionai N=3
supergravity can be obtained by dimensionally reducing l1l-dimensional N=1
supergravity, which is a rather simple theory to describe. We will return to
this fact when we discuss supersvmmetry in higher dimensions.

7 ~ Renormalization of N=1 SUSY Theories

Consider again the Wess-Zumino model:
/d*z d*e o' — fd“z [/dze (im‘bz + §g<1>3) +he| (172)

We would like to work out the superfield Feynman rules of this theory. However
we encounter an immediate difficulty which is that ¢ is not a general scalar
superfield, but rather a constrained superfield. Thus in computing perturbative
diagrams with chiral superfields we must deal with the occurence of integrals
J d*zf d*0 over only part of the full N=1 rigid superspace.

This difficulty is overcome by introducing a projection operator for
chiral superfields. The projection operator we need is

1 —a
P,=——D'D* . T
N 16DD (173)

This operator clearly has the property that it takes a general scalar superfield
to a chiral superfield. i.e.

DyP.®(z,8,8) =0 (174)

follows trivially from the fact that (D)3 = u. To prove that P, is in fact a
projection operator. we must also show that

(P+)? = P,
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We use the following identity (which can be verified by brute force):
[D°,D?) = 8{(Do™ D)8, — 160 | (175)

Thus:

1
160

1
(Py)? 021)2 D’p?

Il

D ‘D*D’p?

16
|
160
= <—IE) D°D*(D*D’ = 2i( D™ D)3, — 160)  (176)
1
"E

= D ‘D -160)
= (177)
where in the fourth line we used (D)*={D)3=0.
Similarly the projection operator for antichiral superfields is
1 = .
- = —ED-D D . (1!8)

We can now deal with the occurence of integrals fd*z[ d%8 over only
part of the full N=1 rigid superspace. The judicious use of projection operator
insertions allow us to convert these into integrals over the entire superspace.

For example:
/d29 mod

/ d*9 moP.d

I}

4 L o2
/demtb GDDCD , (179)

. . -3
where in the last line we used the fact that D ® = () and that. modulo surface

terms. .
/d*:ﬁ" = —4/d4m/d2§ . (180)

A similar difficulty occurs for the cubic interaction term gd3. These ver-
tices correspond to functional derivatives with respect to chiral sources J{y,8).
These functional derivatives produce superspace delta functions

§*zy — 22)6%(8; — 63)
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whereas what we want (for internal lines anyway) are delta functions for the
full superspace:

§4(z1 — 22)6%(61 — 62) = 6%(zy — 22)67(61 — 6,)6%(8: - 82)
§*z1 — 22)(61 — 82)* (81 — 82)" (181

f

This is easily remedied by using the identity

64(zy — £2)6%(61 — 52) = 1D 2y — £2)6%(6, — F2) - (182)
4

In loop graphs, one factor of D from each vertex will get used up comemm:
an [d*@ to an [d*@ . Of course we aiso have a similar trick for the glbf
vertices.

We can now compute the superspace propagator of the Wess-Zumino model
by performing the functional integral of the quadratic part of the action. writ-
ten in the form:

feof oo posn (%7 g (2)
+(q>4>')(: J)} . (183)

7.1 Nonrenormalization
Without further ado we can now summarize the superspace dependence
of the resulting Feynman rules for 1Pl diagrams:

ool

P
“

o There is an [ d*@ for each vertex.

e For a 3 vertex n of whose lines are external. there are 2—n factors of
—=3 3
D°. For a ®!° vertex, there are 2—n factors of D?.

o There is a Grassmann delta function
64(6, — 83) = 8y — 62)%(6, — 62)? (184)
for each propagator.

o There is a factor of D? for each ®-® propagator. and a factor of 52 for
each ®1-®! propagator.
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Consider now an arbitrary loop graph. Integrating the various D? and D’
factors by parts. we can perform all but one of the [d*§ integrations using
the delta functions. Let [ d*6 denote the final integration. and §*(6 — 63) be
the one remaining Grassmann delta function. This delta function is already
supposed to be evaluated at 8 = 6;, due to the 6, integral already performed.
So the graph vanishes unless there is precisely one factor of D? and one factor
of D° acting on the final deita function:

D*D%5%(8 — 6;) = 16

The oniy remaining # dependence comes from the external lines. Thus an
arbitrary term in the effective action can be reduced to the form:

/dég/dqzl"'dqzn F1(21,6,§)---F,\(zmg,?)G(zl,...zn) ) (185)

where the F's are superfields and covariant derivatives of superfields. and all
the spacetime structure is swept into the translationally invariant function
G(zy,...2n}. ‘

This result is called the N=1 Nonrenormalization Theorem. It gener-
alizes to N=1 actions containing arbitrary numbers of chiral and vector super-
fields. An important consequence is that if all of the external lines are chiral. or
if all of the external lines are antichiral, the expression above vanishes. Thus:

The superpotential is not renormalized at any order in
perturbation theory.

Another important result of the above analysis is that all vacuum diagrams
and tadpoles vanish. This is consistent with the fact that the vacuum energy
is precisely zero in any globally supersymmetric theory.

Note our derivation implicitly assumed that the spacetime loop integrals
are regulated in a way which is consistent with supersymmetry. This is not the
case if we employ dimensional regularization. since the numbers of fermions
and bosons vary differently as you vary the dimension. Supersymmetric loop
diagrams are usually evaluated using a regularization called dimensional re-
duction. where the spinor algebra is fixed at four dimensions while momentum
integrals are pertormed in 4 — 2¢ dimensions. This’is not a completely satis-
factory procedure either. 3
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7.2 Renormalization

What renormalization do we have to perform in an N=1 SUSY model with
chiral superfields ®* and a vector supertield V? We have wave function renor-
malization:

oy = ZY17
Vo = Z/*v (186)

and we also have gauge coupling renormalization:
g0=2,9 - {187)

Even better, if we compute using the background field method. the background
field gauge invariance implies the relation: 3

2,20 =1 . (188)

The end result is that we can characterize the renormalized theory in terms
of two objects:

e The beta function:

E]
Blg) = Haa

¢ The anomalous dimensions matrix of the ¢*:

a

yI = Z-l/Z"k#_Zl/ij
du

8 Holomorphy and the N=2 Yang-Mills Beta Function

In this section we will review some of Seiberg’s original arguments about the
N=2 supersymmetric SU(2) Yang-Mills beta function. ?! This type of argu-
mentation deals with the effective infrared (i.e. low energy) limit of the theory.
described by the Wilsonian action. 22 The form of this effective action will
be constrained by three kinds of considerations: ’

e holomorphy,
e global symmetries.
o the existence of a nonsingular weak coupling limit.
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Let us begin by listing the global symmetries of the classical N=? super-
symmetric SU(2) Yang-Mills Lagrangian. These are: the global SU(2) R sym-
metry arising from the automorphism of the N=2 algebra, and an additional
U(1) R symmetry defined by:

8 — e ,
§ — g (189)
¥ o ey | (190)

There is an axial current j2E corresponding to the U(1) R symmetry. Since
both fermions % and A have R-charge +1. there is a nonvanishing ABJ triangle
anomaly. We write the anomalous divergence of the R current. remembering
that the fermions are in the adjoint representation:

2

g '
1672

an}}vmn — 2 mn}}vrnn .
pretl (191)

9™ jm = 2Ca(G)

Next we deduce the moduli space of gauge inequivalent classical vacua

for N=2 supersymmetric SU(2) Yang-Mills. The theory contains an SU(2)
triplet complex scalar field A(z) whose scalar potential is (see Eq. 143):

1 g 3
V(A) = ng-D’ =3 (44D . (192)
Unbroken supersymmetry requires that V(A) = 0 in the vacuum. Up to a
gauge transformation. the most general solution to this requirement is:

1
Alz) = ;ao3 , (193)
where o2 is the Pauli matrix and a is a complex constant. The parameter a
does not quite give only gauge inequivalent vacua. since by Weyl symmetry
vacua labeled a and —a are gauge equivalent. So the classical moduli space is
described by a complex parameter u. with

u= iaﬂ = (ir A% . (194)

For a generic nonvanishing value of u. the SU(2) gauge symmetry is broken
down to a U(1). Since N=2 SUSY is still in force. masses are generated not
Just for two components of the SU(2) gauge field. but also for their N=2
superpartners. Thus the remaining light fields consist of a U (1) gauge boson.
a massless uncharged compiex scalar. and two massless uncharged fermions.
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The infrared effective action clearly exists in this case. The point u = 0. on
the other hand. appears singular.

The form of the infrared effective action is severely constrained by N=2
supersymmetry. The part of this action which contains no more than two
spacetime derivatives and interactions of no more than four fermions must
have the same form as the classical action of the ultraviolet theory:

4—I;Im [/ d“z/dzedzétrﬂﬁ(\b) , (195)

Because of the anomaly, the eifective action is not invariant under a U(1)gp
transformation. [nstead. the Adler-Bardeen theorem teils us that the effective
action is shifted by

1 -
4 mn
u/d z FFM"F

= —w Im [/d%:/ d*0d*6 %2- \Pz] . (196)

Neglecting (for the moment) instanton effects. the eifective action is still con-
strained by U(1)g invariance modulo this shift, which is manifestly a one-loop
effect. The only holomorphic functional of ¥ with this property is
2

Fr= i%\l/’ 1:121\'—2 , (197)
where A is a dynamically generated scale. Actually, since we can absorb the
tree-level F into the definition of A, F; is the full effective prepotential to all
orders in perturbation theory.

From the shift Eq. 196 we see that a single instanton violates R charge
conservation by 8 units. breaking the global U(1)g symmetry down to Zg (in
fact, since u carries R charge 4. there is a further breaking down to Z4). This
suggests that the complete nonperturbative effective prepotential has the form:

1 \112 =~ A 4k
f:i;—;lllzln\—z+ E Fr (a) w3 ) {198)
- : k=1

where the Fj are numerical coefficients, and the kth term arises as a contribu-
tion of k instantons.

Returning to the all orders perturbative result, we can deduce the effective
Wilsonian gauge coupling gw(u) from the gauge kinetic function:

3F(®)
§66d
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thus:

i I 3g3 2 u
prrriad ll - 4% + j—:ln (F)} . (200)
This gives us the all-orders perturbative beta function:
g3
Blg) = i3 (201)

We could try to make an analogous derivation in the case of N=1 SUSY
Yang-Mills. However in the N=1 case there is a separate wave function renor-
malization of the D-term of the chiral superfield action. Because of this IWFGer
and Eq. 201 is not valid.

From the expression for tiie effective gauge coupling we see that the u — oo
limit is the weak coupling iimit. This explains why we did not include negative
k contributions to Eq. 198. i.e. why the sum extends only over positive k.
Terms with negative k& blow up like a power as u — oo, behavior which is
inconsistent with the existence of a nonsingular weak coupling limit.

9 Supersymmetry in spacetime dimensions 2, 6, 10, and 11

9.1 Spinors in arbitrary spacetime dimensions

The dimension of Dirac spinors in d spacetime dimensions can be deduced by
constructing the Dirac gamma matrices obeying the Clifford algebra

™} =227 - (202)

The result is f
24/2 d even
= - . »)
D=0 g odd (209

Starting with Dirac spinors. we can investigate whether it is possible to
impose Weyl, Majorana. or simultaneously Weyl and Majorana conditions on
these spinors.

For Weyl spinors. we need to generalize the notion of the chirality opera-
tor v°. Recall that in four dimensions. CPT conjugate spinors have opposite
chirality. implying that there are no gravitational anomalies. 23 This is related
to the fact that +°. defined as

has eigenvalues =, since



Table 2: Properties of spinors in spacetime dimensions 2 to 12. d~ is the dimension of Dirac
gamma matrices.

d l2 034056078902
B o
d, 12:311}4]&;3116 16 :32{:;-3l(s4i
T . .
minimum spinor dim. | | | 2 ' f a8 II 161 16 [ 6] 16 1232 64
x
I (I b . o -
Weyl? X X XN X XX
Majorana?’ | X IX X X \I\!\l\i
Majorana-Weyl” ,’ X J f I X | T (5
* v | 1 1 )
constmomaie | <] || |
gravitational anomalies? | X ‘ N X | X }
For any spacetime dimension & = 1k, k = [,2,..., we can define "v53” in an
exactly analogous way:

v =0yttt (206)

and Eq. 205 still holds. Thus in d = 1k dimensions Weyl| spinors exist and
gravitational anomalies are absent. [n d = 4k+2 dimensions

)P =1, (207)

implying that CPT conjugate spinors have the same chirality. Thus Wevl
spinors exist and gravitational anomalies are possible. In odd dimensions v°
defined as above is the identity; there is no chirality operator and thus no Weyi
spinors.

The analysis of Majorana and Majorana-Weyl conditions in arbitrary di-
mensions is more involved: a good reference is Sohnius. * The results are
summarized in Table 2.

9.2 Supersymmetry in arbitrary spacetime dimensions

To discuss supersymmetry in spacetime dimensions other than four. we need
an improved notation for keeping track of the number of independent super-
symmetry generators. In four dimensions N=1 S5USY means that there are
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four independent SUSY generators:
le QZ) 51) 52

This is of course the minimum number of supersymmetries in four dimensions
since the minimum spinor dimension is four. Let us refer to this as N=(1)4 su-
persymmetry. More generally, N={p)p.n_;, denotes p* nmijn supersvmmetries,
where nmin is the minimurm spinor dimension.

In this new notation the possible global supersvmmetries in four dimen-
sions are:

L)g
N = (2)s
N = (e
N = (8)a

In 4k+2 dimensions we can have independent chiral and antichiral SUSY
generators. since CPT conjugates have the same chirality. Thus we need a
notation which distinguishes chiral from antichiral SUSY generators:

N = (p, Q)(p+q)-nma;

where p, g are the number of chiral/antichiral SUSY generators. respectively.
From Table 2 it is clear that in any spacetime dimension there is a mini-
mum number of supersymmetries (other than zero). Thus:

As few as <} supersymmetries can ounly occur for: . . . . . . . . . d <4
As few as ¥ supersymmetries can only occur for: . . . . . . . . . d<6§
As few as 16 supersymmetries can only occur for: . . . . . . . . . d<10
As few as 32 supersymmetries can only occur for: . . . . . . . . . d<]1l

Furthermore. in any spacetime dimension. the maximum number of su-
persymmetries of physical interest is always 32 or iess. This is because for more
than 32 supersymmetries all massless multiplets contain unphysical higher spin
particles, i.c. particles with spin greater than that of the d-dimensional gravi-
ton.
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Clearly we expect that many SUSY theories in different spacetime dimen-
sions but with the same number of supersymmetries can be related. presumably
through some form of dimensional reduction or truncation. Indeed this is true
as we will see in several examples. Of particular interest is the possibility of
relating models with extended supersymmetry in four dimensions to simpler
models in the “mother” dimensions 6. 10. and 11.

9.3 Supersymmetry in 2 dimensions

In two dimensions we have (p,g) type superalgebras. [ will briefly describe
some examples.

e (1,0); supersvymmetry: here we have a single left-handed Majorana-Weyi

spinor:
Q+ = QL ,
{Q+r Q+} = .BIP, ) (208)
(@+:P] = [Q4,Pe]=0 (209)

where the antihermitian generators P,, Py generate left and right-moving
translations in the two-dimensional spacetime parameterized by coor-
dinates z. 2 = z° + z!. The minimal SUSY multiplet has just two
states: one left-moving real scalar (a “chiral boson™), and one left-moving
Majorana-Weyl fermion.

o (1,1); supersymmetry: here we can construct a (1, 1) supersymmetric
nonlinear sigma model by supersymmetrizing

/dzdz gij(A)8, A'F: 47 . (210)

The target spaces of such models are general Riemannian manifolds.

o (2,2)4 supersymmetry: here again we can construct a supersymmetric
nonlinear sigma model. The target spaces are Kahler manifolds. Note
that this agrees with the four-dimensional N=(1)4 case. which has the
same number of supersymmetries.

e (4,4)s supersymmetry: here we have supersymmetric noniinear sigma
models whose target spaces are hyperikahler manifolds. Again this agrees
with the four-dimensional N=(2)s case. which has the same number of
supersymmetries.
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Two-dimensional supersymmetry has important applications to superstring
theory, where it is interpreted as worldsheet supersymmetry rather than
spacetime SUSY. For more details see Hirosi Qoguri’s lectures in this volume.

3.4 Supersymmetry in 6 dimenasions

In six dimensions the minimal case is N=(1,0)g or (0,1)s. The SUSY generators
can be expressed as a singie complex Weyl spinor:

Qa , a=1,...8;
{Qa @Y = +7)(M 0Py (211)

where we use capital Roman letters to denote 6-dimensional spacetime indices.
and ~7 is the chiralitv operator. i.e. the 6-dimensional version of “y3”.

In six dimensions massless particles are labelled by irreps of the little group
Spin(4) ~ SU(2)xSU(2). Let us describe the possible massless irreps of (0,1)a
supersymmetry in terms of their SU(2)xSU(2) “helicity” states:

e hypermultiplet: 2(%, 0) + 4(0,0), i.e. one complek Weyl fermion and
two complex scalars, for a total of 444 = 8 real components.

e vector multiplet: (%, %) + 2(0, %), i.e. a massless vector and one com-

plex anti-Weyl fermion. for a total of 444 = 8 real components.

s gravity multiplet: (1, l)+'2(%, 1)+(0, 1), i.e. a graviton, two gravitini,
and one self-dual 2nd rank antisymmetric tensor, for a total of 9+12+3 =
24 real components. '

e tensor multiplet: (1, O_H-'Z(%, 0)+(0,0)}, i.e. one anti-self-dual 2nd rank
antisymmetric tensor, one complex Weyl fermion. and one real scalar
“dilaton”. for a total of 3+4+1 = 8 real components.

Dimensional reduction 6 — 4

Consider six-dimensional N=(0,1)s supersymmetric Yang-Mills theory. We
write the action in terms of fields describing the on-shell massless vector mui-
tiplet described above. The action is:

/dﬁz [-i—FMNFMN + sii\-,vM Var A (212)

[ovhal

where V) is a gauge covariant derivative.
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Now we imagine compactifying this theory on a torus. Let z*. z° be
the compactified coordinates. Then the 6-dimensional gauge field Ay breaks
up into a 4-dimensional gauge field A,, and two real scalars A4, As. The -
complex anti-Weyl fermion A breaks up into two 4-dimensional complex Weyl
fermions. In addition we will have an infinite tower of massive Kaluza-Klein
states, corresponding to the Fourier decomposition

¢(zm’$41$5) - Z t'_{—-in4M4:‘—in5mgzs]¢ﬂ‘ﬂs(zm‘ ’ (213)

N4,y

where ¢(z™, z%, %) denotes any 6-dimensional field component. and mq4. ms
are inversely related to the compactification radii.

The SUSY generator Q, spiits up into two Qq's, implying that the -
dimensional theory has N=2 supersymmetry. The 6-dimensionai transiation
generator Py splits into P, P4, Ps. From the 6-dimensional SUSY algebra
we see that Py and Ps commute with the Q,'s and with P,,,. They also appear
on the right-hand side of {Q,@}. Clearly what we have here are two real =
one complex central charge:

X% ~ (Py + iPs)e®

Multiplying the two Q45 by a phase to convert to Zumino’s basis (see Eq. 35),
this corresponds to a single real central charge

Z=\/P2+pP} . (214)

Thus the dimensionally reduced theory consists of 4-dimensional N=2 super-
symmetric Yang-Mills with central charges and an infinite number of massive
multiplets.

Now suppose we repeat the above excercise. but first adding some massless
d = 6 hypermultiplets (4, B, ) to our N=(0.1)s supersymmetric Yang-Mills
theory. Fach d = 6 hypermulitiplet will give one d = 4 multiplet of fields
with the counting of the d = 4 N=2 massless hypermultiplet. plus a tower
of additional massive multiplets. The 6-dimensional on-shell condition for the
complex scalars A and B

MopuA =0MyB =0 (215)
fixes the masses of the 4-dimensional hypermultiplet scalars:
4m? = 7* . (216)

Thus the dimensionally reduced theory contains massive BPS-sacurated N=2
short multiplets. which as already noted do indeed have the same counting as
the d = 4 N=2 massless hypermultiplet.
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Anomaly cancellation

A striking feature of the 6-dimensional gravity multiplet is that it contains the
self-dual part of a 2nd rank antisymmetric tensor. without the anti-self-dual
part. As is also the case in four dimensions. it is impossible to write a Lorentz
covariant Lagrangian formulation of just the self-dual antisymmetric tensor
field. However one can write Lorentz covariant equations of motion, and it
appears that the corresponding field theory exists and is Lorentz invariant,
despite the lack of a manifestly Lorentz invariant action principle. If

; (217)

ng=ns =1

where ng, n, are the number of gravity and tensor multiplets. then of course
we can write a Lorentz covariant Lagrangian. Thus we have the interesting
result that every 6-dimensional supergravity theory either contains a dilaton
field or has no manifestly Lorentz invariant action principle.

In six dimensions we have both gravitational anomalies and mixed gauge-
gravitational anomalies. Anomaly cancellation is a severe constraint on the
particle content. and in particular on which combinations of SUSY muitiplets
yield anomaly-free theories.

For example, when ny=n,=1, the necessary and sufficient condition for
anomaly cancellation is:

np =n, + 244 (218)

where np, ny are the number of hypermultiplets and vector multiplets. Thus we
always need a remarkably large number of hypermultiplets to cancel anomalies.

Let’s look at two examples of anomaly-{ree 6-dimensional N=(0,1)s super-
symmetric supergravityv-Yang-Mills-matter theories.

e Gauge group Eg x E7. with 10 massiess hypermultiplets in the {1, 56) of
Eg x E7, and 65 singiet hypermultiplets. Thus:

ny, = 248+ 133 =381
np = 3604+065=625 ; (219)

‘which satisfies Eqg. 218.

o Gauge group SO(28) x SU(2), with 10 massless hypermultiplets in the
(28,2) of SO(28) x SU(2), and 65 singlet hypermultiplets. Thus:

n, = 3784+3=2381 ;
np = 560465=1625 : (220)

which satisfies Eq. 218.
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These examples arise as compactifications of the ten-dimensional Eg x
Eg and SO(32) heterotic strings, respectively, onto the complex dimension 2

Kahler manifold Ix3.

9.5 Superaymmetﬁ in 11 dimensions

Eleven is the maximum dimension in which we can have as few as 32 super-
symmetries. Thus d = 11 is the maximum dimension of interest to supersym-
metry theorists. unless one is willing to make some drastic assumptions such
as altering the Minkowski signature of spacetime.

Futhermore. Lhere is only one sensible supersymmetric theory in eleven
dimensions: N=! supergravity. The N=(1)3z SUSY algebra is generated by a
single Majorana spinor @,, a = 1,...32.

Here is the field content of the on-shell massiess d = 11 N=1 gravity
multiplet, characterized by irreps of the little group SO{9):

e efy, the 11-dimensional vielbein. On-shell this constitutes a 44 of 5O(9).

e ¥3, a = 1,...32, an 1l-dimensional massless vector-spinor. i.c. the
gravitino field. On-shell this is a 128 of SO(9).

» Apnp, a 3rd rank antisymmetric tensor. On-shell this is an 84 of SO(9).

The Lagrangian of 11-dimensional supergravity. in terms of these compo-
nent fields of the on-shell multiplet, is rather simple. ?* The first three terms

are:
1 ! - MNP 1 MNPQ e
- ﬂ;eR - ;€¢'MF Dnyp - EeFMNpQF . (221)
where:
& = ll-dimensional gravitational coupling
e = detef, ,
R = Ricci scalar ,
TMNP = eMellef 41477 4Cl _
Dy = Lorentz covariant derivative for 11-dim. vector-spinors ,
Funro = SmAnpq), i-e. afield strength

and the square brackets denote antisymmetrization.
Eleven-dimensional supergravity is the field theory limit of M-theory.
which is in turn a strong coupling limit of superstring theory.
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Dimensional reductions of d = 11 supergravity

We can truncate d = 1 supergravity down to a 4-dimensional theory by sim-
ply suppressing the dependence on z*-z%. Since the resulting 4-dimensional
theory still has 32 supersymmetries. we obviously must get N=(8)3; extended
supergravity. Provided one is satisfied with on-shell formulations, this is a
simpler way of deriving the rather complicated 4-dimensional theory.

Another useful example is to truncate d = 11 to d = 10. The Majo-
rana spinor Q4 (32 components) splits into two 10-dimensional Majorana-Weyl
spinors Qq, @& (16 components each) with opposite chirality. Thus the trun-
cated theory is a nonchiral d = 10 N=(1,1)3; supergravity. commonly known
as Type IIA supergravity. ?°

The components of the 11-dimensional vielbein break up as follows:

eﬁ,—,(e(% A;‘) , O (222)

where we have set the 1 x 10 block on the lower left to zero using the freedom of
those local Lorentz transformations which mix the z!! direction with the other
ten. The 10-dimensional massless vector Ay arises from the el} components’
of the vielbein, while the real scalar ¢ (the 10-dimensional dilaton) arises from
the e}! component.

The 1i-dimensional antisymmetric tensor field Apyap splits into a 10-
dimensional 3rd rank antisymmetric tensor Apryp and a 2nd rank antisym-
metric tensor Bayry (from Aarnii). The ll-dimensional gravitino field Yir
becomes:

Vi — Ui, i, A%, A (223)

giving two l0-dimensional Majorana-Wey! vector-spinors of opposite chirality.
and two 10-dimensional Majorana-Weyl spinors of opposite chirality.

Since Type I1A supergravity is vectorlike it is trivially free of gravitational
anomalies. It is the field theory limit of the Type IIA superstring.

9.6 More on supersymmeiry in 10 dimensions

Type 11A supergravity has N=(1,1)3; supersymmetry. Since 16 is the minimum
spinor dimension in ten dimensions, we can in principle construct a chiral
N=(1,0)16 supergravity theory as well; however such a theory has gravitational
anomalies. The only other possibility in ten dimensions is a chiral N=(2,0);
supergravity. This theory. known as Type IIB supergravity. turns out to
be anomaly-free. due to highly nontrivial cancellations. Type IIB cannot be
obtained by dimensional reduction of 11-dimensional supergravity.

7
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Table 3: Comparison of Type 1l supergravities.

Type llA: | 1 | 28 i %5y | % | 56,
¢ | Bun | ety | 4Am | Amnp |
8 | # i 564 | 36e |
X v | ¢ |
Type lIB: | | | 28 |35, | I 23 e
LA | AmN : edy | A Aun | Amwro
SN s 96,1 56,
EBESEIRE

) N=(2,0)3; auperéymmelry' is generated by two Majorana-Weyl spinors Qa,
Qa of the same chirality. The on-shell Type I1IB supergravity multiplet has
the following field content:

3 efl, the 10-dimensional vielbein.

e AyNpQ, a self-dual dth rank antisvmmetric tensor.

e Apy, Apy, 2nd rank antisymmetric tensors.

e A, A. real scalars.

o ¥, 1[)%,, Vajorana- Weyl vector-spinors of the same chirality.
e A% )% Majorana-Weyl spinors of the same chirality.

Because the field content includes the self-dual part of a 4th rank antisymmetric
tensor, Type IIB supergravity does not have a Lorentz covariant Lagrangian
formulation.

The little group in 10-dimensions is SO(8). Because of the special auto-
morphism symmetry of the Lie algebra D, all of the dimension< 224 irreps
except the adjoint occur as triplets of irreps with the same dimension and in-
dex. These irreps are distinguished by subscripts v. s, and c. Thus we can gain
more information about the differences between Type I1A and Type LIB su-
pergravity by listing the SO(8) irreps corresponding to each component field.
Note that both theories have 128+123 = 256 real field components.
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Let us consider again 10-dimensional N=(1,0)¢ supergravity. also known
as Type I supergravity. As we have noted. this theory is anomalous. Re-
markably though. by coupling this theory to the 10-dimensional supersymmet-
ric Yang-Mills multiplet. we can in certain cases obtain theories free of both
gravitational and mixed gauge-gravitational anomalies. The field content of
the chiral supergravity is just a truncation of the Type IIA fields:

elry Bun, ¢
bor, A%

for a total of 64464 = 1238 real field components. The 10-dimensional on-shel]
N=(1.0)16 supersvmmetric Yang-Mills muitiplet consists of a massless vector
and a massless Majorana-Weyl spinor

AM’ Xa

in the 8, and 3. irreps of the little group. and the adjoint representation of
some gauge group.

The details *® of how to couple N=(1,0) supergravity to N=(1,0) Yang-
Mills, consistent with both local supersymmetry and gauge invariance, is be-
yond the scope of these lectures. We merely note that one surprising result
is that the gauge invariant field strength of the massless antisymmetric tensor
field Byry has an extra contribution which is a functional of the Yang-Mills
gauge field Apr. Then. even though Byy is a gauge singlet. gauge invariance
requires that By transforms nontrivially under Yang-Mills gauge transfor-
mations. This strange fact makes possible the Green-Schwarz anomaly cancel-
lation mechanism.

The coupled d = 10 supergravity-Yang-Mills theory is anomaly-free only
for the following choices of gauge group:

50(32), Es x Es, Eg x [U(1)]**8, [U(1)]*°®

The first two choices correspond to the field theory limits of the S50(32) and
Eg x Eg heterotic strings; the other two choices can probably also be connected
to superstring theory using D-brane arguments.

10 Conclusion

It is a remarkable fact that many technical SUSY topics. thought until recently
to be of purely academic interest. have turned out to be crucial to obtaining
deep insights about the physics of strongly-coupled nonabelian gauge theories
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and strongly-coupled string theory. Even if there is no weak scale SUSY in the
real world - even if there is no SUSY at all - supersymmetry has earned its
place in the pantheon of Really Good Ideas. Furthermore. we are encouraged
to continue to develop and expand the technical frontiers of supersymmetry.
confident both that there is still much to learn. and that this new knowledge
will find application to important physical problems.
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Appendix

Notation and conventions

My notation and conventions in these lectures conforms with Wess and Bagger?
with the following exceptions:

o I use the standard *West Coast™ metric:
1

e I (224)

-1

This is the standard metric convention of particle physics. Wess and
Bagger use the East Coast metric still popular with relativists and other
benighted souls.

Changes which follow from my different choice of metric:

1. My o° and &° are the 2x2 identity matrix instead of minus it.

2. I define the SL(2,C) generators with an extra factor of i:

1, o s g1
mnf — [a;",-a""’s - a':,-ya"”ﬂ} . (225)

Oq

£

3. I define the Levi-Civita tensor density €o123 = +1 instead of minus
one.
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4. As aresult of this. oy is seif-dual and &, is anti-self-dual, instead
of vice-versa.

5. In the full component expansion of the chiral superfield ®(z, 4, 6),
the (66)(66) term comes in with the opposite sign.

Spinor definitions and identities

Irreps of SL{2,C) =~ SO(1,3):

{=,0) = left—handed 2 component Weyl spinor

) = right—-handed 2 component Weyl spinor

In Van der Waerden notation, undotted = (%,0), dotted = (0, -;—)

(;10) : Ya )
1 & — .
(0, ;) : Y® = (¢a)
Also:
Ya = (Ya)! P = (va)” . (226)

We raise and lower spinor indices with the 2-dimensional Levi-Civita symbols:

0 -I
= = (|

-4 0 1
af _ afg __ — ppd
€ = ¥ = (_1 O) =1ig® . (227)
Thus:
P =Py Yo =eqpP’
vE = e‘.’ﬁzﬁé : Ve = E&p:‘!;ﬂ . (228)
Note also:
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€ap€’’ = 61,

es5f’ = 61, (229)
€age’? = 6185 -618%

cage’’ = 8163634

Pauli Matrices:
0 1 n o =20 1
1 , 2 _ 3 _ .
o —-(l ”) o _<i g ) T _<“ -—l) 1230)

From which we define:
a™ = (Iv 5) =0m
eg™ =,-) =om , (231)
where I denotes the 2x? identity matrix. Note that in these definitions ~bar™
does not indicate compiex conjugation.

o™ has undotted-dotted indices: UZ‘B

&™ has dotted-undotted indices: ™%

We aiso have the completeness relations:
P

tre™s™ = 2™
m =76 _  9gbg? 929
oogom = -536‘5 . (232)

o™ and @™ are related by the Levi-Civita symbols:

- ma r A6 , _ -mi .
gmaf = TPl o7 = €55€60a0 T (233)

It is occasionally convenient to do a “fake™ conversion of an undotted to a
dotted index or vice versa using the fact that ¢ and &° are just the identity
matrix: o , N

Y= ($5)°6%% 1 Y% = (gg) 0T (234)
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Because .the Pauli matrices anticommute. i.e.
{e',0d} =691 i,j=1,2,3
we have the relations:
- B _
(a™E™ +o"d™). = 29™nEE

(&ma"-f-d"a"")g = 217""‘62

Spinor Summation Convention:

PX =9 = oYX = xTe = X9
¥X = Yax® = —¥%%a = Xa¥® = XY

Note that these quantities are Lorentz scalars.
We aiso have:

(x¥)! = (x°Ya)! = bak® = x¥
(xe™¥)! = o™z = Lorentz vector

Other useful relations are:

VY = ey
Vals = eap¥¥ |
‘cxﬁﬁ = zféﬁ'&’; '
1/;&'/;;-} = "gfdg'"ﬁ'z;

The SL(2,C) generators are defined as

mnB  _ l m -nyf __ _n -myB
Ta - 4 [aaﬁa Cayd }
. 3 . .
—mna ., _ —may, . n ~nay,m
(o8 = - | o . -0 a s
¢} 4 [ 18 75}
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We have:

€m0, = 2t0™" : self dual (1, 01

€MNPG,, = —2ig™" : antt self duai (0,1) (241)
And thus the trace relation:

 mn U oo e - '
tr oo = Sin Patt — gy P)_:_%E'-mpq ] (242)

Fierz identities

0)(69) = —=(66)(¢%) (243)
(68)(69) = —(¢4)(66) (244)
pe"x = —xd"¢ (245)
$omX = —XOmd (246)
(80™6) (8™ 6) = zn"*"(ea)(e“é) (247)
(0™6)4(60™6) = énm"ea(éé)—i(amﬂma(eé) (248)
(60)(64) = =(80™0)($om¥) (249)
(09)(69) = =(80™8)(gomd) = 188)(6%) (250)



General {-dimensional SUSY algebra

{Q4.Ts5)
{Q4,05}
{Qaar @55}

[Q4, Pl
(Q2, Monn]
[@%s Mima

[P, Pa]

[Mmm Pp]

(Mo, Mp,]

[Q‘J;’ Bl]
[6&.41 Bt]
(Be, Bi}

[Pma Bl]

= 207 Pmé5

= fapatABBl

- 74
—edﬂ:alABB

@4 Pn] = 0

= Umnaﬁ Q‘;

& .7
= U:m 8 QA

= i(ﬂinm - Tlman)

= "i(nmpan - nqunp
_nanmq + Tlonmp)

5¢5Qa

~5i4" Qas

iCy’ B;

= [ans Bl] = 0

(251)

(252)

(253)

(256)
(257)

(258)

(261)
(262)

(263)

Where the a! are antisymmetric matrices, and S;, a; must satisfy the inter-

twining relation:

A _CBk
Szca

_  __ACk onB
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Note also the perverse but essential convention impiicit in Wess and Bagger:

tAB

a = -a4p (265)
N=1 SUSY algebra in 4 dimensions
{Qay @5} = 207.Pn (266)
{Qa\ Qu} = {QaQ@y}t = 0 (267)
[Qmpm‘! = Q;,,Pm'. = 0 1268)
{Qa, -A!mn.; = 7--rw\c:ijQB (269)
@, Monn; = GEa @ (270)
(Prn, Pr) = 0 (271)
(Men, £p) = UnnpPrn — NmpFn) (272)
[van -"Ipq} = —t (Tlmpt‘unq - UquInp - ﬂnpﬂfmq + nm,Mmp)('ZT:l)
[Qa, &2 = RQa (274)
(Qa» R -RQ, (275)
(P, R = (Mpn, Bl = 0 (276)
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